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Abstract. Let d < 0 be the discriminant of a complex quadratic field of class-num- 

ber h(d). In a previous paper the author has effectively shown how to find all d 

with h(d) = 2. In this paper, it is proved that, if h(d) = 2, then Id l < 427. 

1. Introduction. The work for this paper was completed in the summer of 1971 

and reported on then in various places, including the informal conference at Asilomar 

organized by the Lehmers. It is particularly appropriate that it appear here since it is 

a direct generalization of my Ph.D. thesis,which was written under the supervision of 

D. H. Lehmer. Let d < 0 be the discriminant of a complex quadratic field of class- 

number h(d). The aim of this paper is to prove 

THEOREM 1. If h(d) =2, then d is one of the eighteen numbers -15, -20, 

-24, -35, -40, -51, -52, -88, -91, -115, -123, -148, -187, -232, -235, -267, 

-403, -427. 

Actually, we have proved in [3] that if h(d) = 2, then Idl 1010 30. Thus it 

suffices to prove the following result: 

THEOREM 2. If h(d) 2 and Idl < 102000, then d is one of the eighteen 

numbers listed in Theorem 1. 

Outside of a result of Lehmer, Lehmer and Shanks quoted in Lemma 5, every 

number used in this paper was calculated in 1971 on a programable desk calculator.* 

Indeed, if we restrict ourselves to the range 4 101 < Idl 102000 (as Lemma 5 

almost lets us do) and if we accept the numbers in Table 1 (certain constants involv- 

ing the first 11 zeros of c(s)), then we shall see that there is only one point that even 

needs a programable calculator (Lemma 11 below). All the other results regarding the 

range 4 1011 < Idl K 102000 have been written so that they may be verified by 

hand. Since this work was first announced, Montgomery and Weinberger [2] have al- 
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290 H. M. STARK 

so proved Theorem 1. Although similar in spirit, their method involves zeros of L- 
functions with large conductors. The numbers in their tables depend on an extended 
computer calculation. 

2. Theoretical Preliminaries. Let 

Q(m, n) = am2 + bmn + cn2 d = b2 - 4ac < 0, a > 0, 

be a positive definite quadratic form and let 

(s, Q) = I 
E Q(m, n)-S. 2 m,nO,O 

We let Bk(x) be the kth Bernoulli polynomial (BO(x) 1, B1(x) = x - 1/2, B2(x) = 

x2 - x + 1/6, - - ). We will have occasion to use Bk(x - [x]) where [x] is the great- 
est integer function. The greatest integer notation occurs only with the Bernoulli poly- 
nomials. By the Euler-Maclaurin sum formula 

00 00 00 F/ n\2 v 1-s 

?(,Q) = ,(aM2)-s + a-s , ( +b) Id l n2] 
m=1 n=1 m=-oo L / 4a2 

VS = a`-st2) + a-s E|o ( + Ia nz dx 

+ f0 Bi(x - [x]) d (1(x + + [d n2]) dxt 

= a-St(2s) + 22s-1as-1 Idl(Y12)-`(2s - 1) (u2 + 1)-sdu + h(s, Q) 

where 

h(s, Q) = a-s fOB,(x - [x])D [( + +-2i dx. 

With s = a + it, we proved in [4] that for a > 1/2, k > 2, k even, IdI/a2 > 4, 

Ih(s, 1 ___k 

2 
41s1 + 2k- 2k 

lh(s, Q) I< a- /27T k< -( Id la2)1/2) 1T(2 Id I)aZ 

For our purposes here, we need to improve this estimate. 
LEMMA 1. If a > ?2, k > 2, then 

\ r / /2 k k / 
lh(s, QI< 2 (4a-Y /21 

k 
- 

- 2s1+ (k -l)2 (\1 
Q) ( ) ( ) ( ,)[ r(IdI/a2)? e ( 27r3k2) 

Proof. As in [4], we let x + bjl(2a) = uj/Id 1/(2a) give a change of variable from 
x to u and then we integrate by parts k - 1 times to get 
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f Bi(x - [x]4 ) [(x + 2ia) + d" 2] dx 

(2) 

k- (\k+2s-1 Bk(x - [X ) {(u2 + 1)S}du. 

(-) 1idI1/2) J-o k! du k 

As in [4], we use the estimate, 

(3) IBk(x)/k! I < 24(k)/(27r)k, 

but we will improve our estimate of (dk/dUk) {(U2 + I)-s}. Let 

gk(s, U) = (l)k (U2 + 1)s+k/2(dk/dUk) {(U2 + 1)-S}. 

Thus gk(S, u) is a polynomial in s and a rational function of u and (u2 + 1)/2. For 

small y and u, we have 

(4) kkuS+ = E(-l )kgk(S, U) 2 k/2 

the left-hand side being given by the principal value. If we let 

u=cotanQ, 0 <0 <7r, 
and 

y - u -(u2 + 1)?uz 

then the expansion (4) becomes 
oo z~~k 

[(1 - eioz)(I - eio z)]= E gk(S u) kt 
k=O 

which is valid for small z and 0 near 7r/2. On the other hand, for small z, we may 

get this by multiplying the series for (1 - eioz)s and (1 - eioz)-s; in this way we 

get 
k k 

(5) gk(SI U) E ) [s(s + 1) (s +j- l)][s(s + 1) * (s + k-j- l)]ei(k2j)O. 
j=O j/ 

This is now valid by analytic continuation for all s and all real u (i.e., all 0 in 
the range 0 < 0 < ir). By putting absolute value signs everywhere in (5), we see that 

1gk(s, u)1 is less than or equal to the coefficient of zk/k! in 

[(1- Z)(I - Z)-Is I= (1 - Z)-2 IsI 

and hence for all s and all real u, 

1gk(s, u)1 < 12s1(12sI + I) . (12s1 + k - 1) 

<[12sI + (k -1)/2k. 

Using this and (2), we find for a > l2 that 

Ih(s, Q)I < 2a-a ?(k)2 (g 1)2) [W(k 1)/ 2 ]kf (u2 + I)-(k+l)/2du. 

To simplify this, we note that 
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(U2 + 1)-(k+l)/2du= d rF(k/2) 00 r~~~~~((k + 1)12)' 
Now Stirling's formula, 

log r(z) = (z - /2)logz - z + ?hlog(2Tr) 

B2(0) B3(0) _f B3(u - [u]) 
2Z 6Z2 310 (- 3d 2z 69 (u +Z3 

and the same generalization used in [4], 

log r(z + ?2) = zlogz - z + 1/2log(21r) 

B2(1/2) B3(1/2) 1 ooB3(u - [/2 - dU -21) 
2z - 6z2 ( -u + 

du 

shows that for real z > 0, 

log r(z) < -lo/gog z + -+ 2 2 1 rP(z + 1?) 8z 3 (27T)3 2Z2 

We set z = k/2 in this and then use the estimate 0(m) < m/(m - 1) for m 3 
and m = k; the lemma follows. 

LEMMA 2. Suppose that a < (IdI/3)Y2 and that a ? 2. For all integers J > 1, 
we have 

(6) Ih(s, Q) I < 4 Is 1(3 Id -'4L j-' + I29 +1 j-2] 

Proof For a = 1/2, we have 

|| B (x-[x]) d:[(x + ) 2Id I2] i dX 

(7) < Is I 2 + 1dj2) 21yIdy 

Id1 
1/2 

S 2 lsl Q d I12 
\4a2 

On the other hand, we may integrate by parts as in Lemma 1. For this purpose, we 
note that 

(d2/du2)[(u2 + I)-s] = 2S(u2 + 1)-" [(2s + 1) - (u2 + 1) (2s + 2)]. 

As u runs from 0 to m, (2s + 1) - (u2 + l)-1(2s + 2) covers the straight line 
segment from - 1 to (2s + 1). Thus for a = /2, 

I(d2/du2)[(u2 + l)-s]I< 12s(2s+ 1)I(U2 + l)-3/2. 

It follows from (2) with k = 2 and a = /2 that 
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|X BI(x _[XI) x[(+ bi + id j2 dx 

(8) (fjd I/2) ioo 12 du2 [( ) ]d 

4ja2 12s(2s +1 (u2 I -3/2du 

IdIj 1 2 F 
0 

1d 

< 4a2 Is(2s + 1)1/(3 Id1V2). 

We use the estimate (7) for j ? J - 1 and the estimate (8) for j > J to get 

Ih(s, Q)l S 4a 
I 

J3 E + 3/2 + j= -1 + 
Id(2 I1) Id 1?/ jjl31 

The right-hand side increases with a and so we may replace a by (Idl/3)1/2. 

This gives (6). 
LEMMA 3. Let Q(x, y) be a reduced quadratic form. Then for integral x and 

y not both zero, Q(x, y) > a and if y 0 O, Q(x, y) > c. 
Proof. We have 

4a Q(x, y) = (2ax + by)2 + Idly2 

and since Q(x, y) is reduced, c >a > IbI. Thus for IyI > 2, 

Q(x, y) > Id l/a = 4c - b2/a > 4c - a > c, 

while for Iy I=1, 
Q(x, y) > (b2 + Id I)/4a - c 

and finally for y 0, x $ 0, 

Q(x,y)>ax2 >a. 

From this point on, d < 0 is a discriminant of a quadratic field of class-number 
two. There are then two reduced quadratic forms of discriminant d; the principal 
form is 

2 Idl 2 if d is even 

Q1(x, y) = 
x2 + xy+ Idl+ 1 y2 if d is odd, 4 

and the other reduced form will be denoted throughout by 

Q2(x, Y) = a2 + bxy + cy2. 
Thus a < (Id I/3)?/ since Q2 is reduced and a is a prime number by Lemma 3 and 
the fact that some prime factor of a must be represented by Q2. If c / a then 
either b = 0 or b = a. In either event a I d and a X c, since then d could not be 
a field discriminant. But some prime factor of c must be represented by Q2 and so 
c is also a prime. 
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LEMMA 4. Let p = p1 and P = P2 (P1 < P2) be the smwllest primes such 

that (d/p):$-1. Then p1 = a and if c a then P2 = c. If p1 = a < (IdI/4)/2, 

then aId and c > (Id 1/4)/2. If p is a prime and (dip) 1, then p > (IdI/4)/2. 

Proof. By Lemma 3, any prime represented by Q1 must be > Id 1/4. We know 

that a and c are both primes (sometimes equal). Further since Id I> 15, a < 

(Idl/3)/2 < Id 1/4 and 

b2 +Idl a + dl I/IdI\2dldl I 
c = 4a 4 4a 

< 4 3 8 < 4 

we see from Lemma 3 that p1 =a and if a =$ c, then p2 = C. If a <(IdI/4)/2, then 

c > Id l/(4a) > (Id1/4)/2. The rest of the lemma follows. 
Lemma 4 allows us to very efficiently search through "small" values of d for 

fields of class-number two. Fortunately a search for something similar is in the litera- 

ture and can be adapted to our purposes. 
LEMMA 5. Let Ma be the smallest positive integer such that Ma 3 (mod 8) 

and such that for all primes p < a, (-MaIP) = -1. Then 

M3= 1333963, M67 = 20950603, M149 = 575528148427. 

If aO=53, 67, or 149 and a> aO then IdI >Mao. 
Proof. The values of Ma are part of Table 3 of [1]. Note that if p is the larg- 

est prime less than a, our Ma is the Np of [1]. Dr. Shanks has kindly informed me 

that the value of N149 (our M1 50 is erroneous and that it should be increased to 

N1 49 = N1 51. This does not affect the values that we use here. When d is even, 

a = 2. When d is odd, a = 2 only for d =-15. Otherwise for odd d, a > 2 and 

this gives (d/2) = -1 which implies Id I-3 (mod 8). Thus by Lemma 4, if a > aO 

then Id I>Mao. 
For a >- 149, Lemma 5 gives us a convenient jumping off place. Unfortunately, 

for smaller a, the starting point is not so advanced. For a < 53, [1] does us no good 

at all since M47 = 77683, which is far too small to use in our present estimates (and 

M41 = 163). In the sequel, what we will actually use is 

M149 > 4 - 101 , M67 > 6 - 106, M53 > 1.2 - 106. 

3. Some Numerical Estimates. For convenience, we let h1(s) = h(s, Qj), f = 1, 2. 

Also we let 

Ld(s)= E: ()n-S. 

We then have, 

t(s)Ld(s) = 0(S, Q1) + (S, Q2) 

= (1 + as) (2s) + (1 + as- 1 )id1) ? 
s 

12p(S 1/2) ?(2s - 1) 4 ~~~F(s) 

+ h1(s) + h2(S). 

After an application of the functional equation of c(s), we get 
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0(s)Ld(s) - (1 + a-S) (2s) = (1 + aS-1)t(2 - 2s)r(s) 
- s 

+ hl(s) + h2(S). 

We apply this equation with s = Pm = Y2+ iym, a zero of c(s). The result is 

Idld \ i7m (1+ a- 1/2 +i'M)?(l - 2iym)r(1/2- iym) 

\49r2/ (1a+ c?iYm) ?(l + 2iym)F(?2 + i^Ym) 

Id I)iym hl(pm) + h2(Pm) 

\41r2 t(2pm)(l + a-Pm) 

Let amm, 0 <? am < 2ir be defined by 

(1 0) am -_-i - 2 arg t(2pm) - 2 arg r(pm ) (mod 2iT). 

For convenience we let 
Ih=l(pm)l+ Ih2(Pm)I 

- (1Ia ?)lD(2pm )I 

It will also be useful to let 0 denote a number, not necessarily the same each time it 
occurs, such that 101 S 1. 

LEMMA 6. If am(a) < ?/2 then there is an integer xm such that 

'yM log adT 01 + 27rx + 2 arg (1 + a-12+i7M) + T ( 2 m m 3 p(7O 

Proof. The lemma follows from (9) thanks to the elementary inequality, 

(11) larg(l +z)I?r Izl/3 
which is valid for Iz I S ?2. 

Now we define 
1 Yn 

and 

Bn(a) = 
I y 

arg (1 + a-1/2+iYl) - arg (1 + a-1?2+iYn)]; 

(the Bernoulli polynomials will not occur again). 
LEMMA 7. If 6m(a) < ?h for m 1I and m = n, then 

(12) x =-nxAl +A +B(a )+ 0-6n(a)+8(a)I. n 
Y1 

n na)+6 y 
()+8na 

If further a > 4, then 

(13) Xn -xi +An+0 2a /2 + I+ 

y 

b1(a)+ n(a) 

Proof Equation (12) follows from Lemma 6 and (13) follows from (12) and 

(11). 
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Now we need some explicit numerical estimates for Ihj(pm) I for various m. 

The nature of Lemmas 1 and 2 is such that any estimate derived for h2 will automat- 

ically be valid for h1 when the a-/2 term is deleted. We have, 

(7.2 0-la-l/2 for m < 11 and IdI/a2 > 4000, 

(14) Ih2(PM)I< 3.3* 10-1a-1/2 for m < 2 and IdI/a2 800 

1.043a-/2 for m < 2 and Id I/a2 > 250. 

These estimates follow from Lemma 1 with Isi = 55, k = 84 in the first, IsI = 21.05, 

k = 44 in the second and IsI = 21.05, k = 11 in the third. Corresponding to these 

are the estimates 

7.2 10-11 for mSl1 and IdI>4000, 
(15) Ih I(P") I < 

.3 10-11 for mS2 and IdI>800. 

We also need some estimates from Lemma 2. With s = p1 and J = 6 in Lemma 2, 

we get 
(16) lh 2 (P 1) < 141 Id I-/4 

and with s = P2, J = 9 in Lemma 2 we get 

(17) Ih2(P2)1I < 235 Id l-11 . 

From these and the values of It(2pn)I in Table 1, we get without any difficulty, 

iO-9 for m S 11 and IdI/a2 >4000, 

2.4- 10-10 for m ? 2, IdI/a2 > 800, 

l5m(a)I < 2 10-10 + 1.26(a'/2 1)-I for m = 2, Id I/a2 > 250, 
10-10 + .537(a/2 - 1)-i for m = 1, Id I/a2 > 250, 

2 * 10-10 + 283 IdKI-'(1 -a-1/2)-l for m-2, IdI I800, 

(18) 10-10 + 72.5 Idl-14(l -a-1/2)-l for m = 1, IdI>800. 

LEMMA 8. If either Id I/a2 ? 800, or IdI/a2 > 250, a > 5 or IdI > 109, then 

x1 > 2.249 log IdI - 8.543 -I1a-/2 

and 3 

Id I > 41.4 exp (.444x1 - .1 49a- 1/2). 

In particular, xi > 3 in all cases and if x1 > 10400, Id I> 102000. 

Proof We see from (18) that I81(a)I < 1/2 under the hypotheses of the lemma 

(we only need to make this estimate in the third case for a > 100 as otherwise the 

first case applies). We note that (11) holds for z = a-1/2+iYl (for a = 2 and 3 by 

direct calculation) and thus Lemma 6 implies 
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and 

Id I > 47r2 exp27rx, 
+ a, - (1r/6) - (2irr/3)a-2 

Idl 472 ep L 8 

The lemma follows from the numerical values of 'y1 and a, in Table 1. 

TABLE 1 

n y + 5 10 0 ac /(27r) + 10_ 0 1(2p)l + 1 0 /y1 + 10 0 An + 10 0 

1 14.134725142 .189940085 1.9488 

2 21.022039639 .744277023 .8310 1.487262004 -.461786352 

3 25.010857580 .644452141 .5342 1.769461898 -.308360397 

4 30.424876126 .868568588 .5148 2.152491528 -.459724164 

5 32.935061588 .424902705 .8130 2.330081501 .017673174 

6 37.586178159 ,399505477 .9383 2.659137534 .105571332 

7 40.918719012 .353564641 1.9220 2.894907301 .196294299 

8 43.327073281 .439618184 .9778 3.065292946 .142603819 

9 48.005150881 .380301171 .5426 3.396256411 .264784061 

10 49.773832478 .365820574 1.4281 3.521386654 .303031906 

11 52.970321478 .266601822 .6885 3.747531058 .445204546 

The values of y2/y1 and A2 are correct to within 5 10 100. 

LEMMA 9. If Id l/a2 > 4000, then for 2 < n < 11, 

'yn 2 n 
(19) nXT - Xi -An| < io 9 + 3a- /( +). 

If Id Il/a2 > 800, then 

(20) |x2 --X1 -A2 -B2(a) < 10's, 

and if also a > 4, then 

(21) X2 - 7X 1 -A21 < 10-1 0 + .83a- /2?. 

If Id I/a2 > 250 and a > 13, then 

(22) |x2 -~-X1 -A2 -B2(a)j < 10-10 + .344(a/2 - 
I)-1, 

(23) X 2 

Al 

-A K 1010 + 
.344(a/2 - 1)-1 + 

.83a-/2. 

If IdI>4 * 1011 and a> 104, then 

(24) 7 A21 < 1O-10 + 66 Idl-/4 + .8+3a-2. 2 * I I 
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Proof We see from (18) that 6m(a) < Yz for m = 1 and m = n in every 
case. The lemma is now a direct consequence of (12) and (13) of Lemma 7 together 
with the estimates in (18). 

4. Proof of Theorem 2. We now wish to systematically examine the inequalities 
of Lemma 9 and show that xi > 10400 so that by Lemma 8, Id I> 102000. 

LEMMA 10. If a> 1014, then Id I> 102000. 

Proof. For a> 1014, we have Idl > 3 * 1028 (and by Lemma 8, xi > 3). It 
follows from (24) that 

Lx2 - ('y2/,y1)xl -A2 I< 5.15 * 10-6 
which we will write as 

1 ~~5546 /2 5546\ 
(X2 - 4) - (xl 3) 72 (xl - 3) + .340 . 10-6 

(25) '' / 
< 5.16 - 10-6, 

since 4 - (3'Y2/y1 + A2) = .340- 10-6 + 2 - 10-90 and 

(26) 72 - 5546 = (3 + O)10-9. 
y1 3729 

Therefore 

(27) }(x2 -4)+ 539(x - 3)1 < 6 - 10-6+4109x. 

But for xi < 10400, the right-hand side of (27) is less than 1/3729 and so, since 
(3729, 5546) = 1, 3729 I(x1 - 3). Thus if x1 < 10400, then x, = 3732 or x1 = 

7461. But we see from (26) that x1 = 3732 and x1 = 7461 do not satisfy (25) 
either. Hence x1 > 10400 and Idl > 102000. 

LEMMA II.If IdIl/a2 >4000 and a >53, then IdI> 102000. 

Proof. By Lemma 8, x1 > 0 and by (19) of Lemma 9, 

(28) x-inx l-AnI < I- (L+ 1) 2 < n <11. 

A check on a programable desk calculator shows this can not happen for 0 < x1 < 

10400 and this proves the lemma. 
Incidentally xi = 2324 and x1 = 7898 satisfy (28) for 2 < n S 10. Perhaps 

the most interesting number though, is xi = 42 which satisfiles eight of the ten inequal- 
ities in (28) and comes close on the other two. It would be interesting to know 
if somewhere around -5 * 109 there is a discriminant with small class-number that ac- 
counts for this. 

LEMMA 12. If 53 < a < 1014, then IdI > 102000. 

Proof. We break the interval on a up into several pieces. We begin with 104 < 

a < 1014. By Lemmas Sand 8, IdI> 4* 10'1 and x1 >51. It follows from (24) 
that x1 > 75 (see Table 2) and therefore by Lemma 8, Idl > 1016. For 104 < a < 
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TABLE 2. Ix2 - (y2/yl)x,-A21 + 10-40, where x2 is the nearest integer to 

(72/71)XI +A2 for 0?xi <85 

xi 0 1 2 3 4 5 6 7 8 9 

0 .4618 .0255 .4873 .0000 .4873 .0255 .4618 .0510 .4363 .0764 

10 .4108 .1019 .3854 .1274 .3599 .1529 .3344 .1783 .3089 .2038 

20 .2835 .2293 .2580 .2548 .2325 .2802 .2070 .3057 .1816 .3312 

30 .1561 .3567 .1306 .3821 .1051 .4076 .0796 .4331 .0542 .4586 

40 .0287 .4840 .0032 .4905 .0223 .4650 .0477 .4395 .0732 .4141 

50 .0987 .3886 .1242 .3631 .1496 .3376 .1751 .3121 .2006 .2867 

60 .2261 .2612 .2515 .2357 .2770 .2102 .3025 .1848 .3280 .1593 

70 .3534 .1338 .3789 .1083 .4044 .0829 .4299 .0574 .4554 .0319 

80 .4808 .0064 .4937 .0190 .4682 .0445 

With an error of .0032, the table is periodic in xl with period 39. This is because 58/39 

is an excellent approximation to 72/71 The small change from xl to xl + 2 is because 3 - 

2(5 8/39) = 1/39. These properties show that -x2- (y2/-yl)xl -A 21 will be small only at x l = 3 

42, 81, 120, 159, - and values removed from these by small even numbers. 

106 we now have IdI/a2 > 4000 and Lemma 11 applies. So we may restrict our atten- 
tion to 106 Sa<l0'4 and dl> 1016. But now by (24) again,x1 > 81 and by 

Lemma 8, Idl> 16 - 1016. Once more we apply (24), this time xi > 160 and so 
dl > 1032 and IdI/a2 > 4000. Therefore by Lemma 11, Idl > 102000. 

Next, we take the range 149 S a < 104. By Lemma 5, IdI > 4* 10" l and so 
by Lemma 11, Idl > 102000. Lastly, we take the range 53 < a < 149. By Lemma 5, 
IdI> 1.2 * 106 and so by Lemma 8, xi > 22. For 53 S(a < 67 we have IdI/a2 > 
250; by Lemma 5, for 67 < a < 149, Idl > 6 - 106 and again Id I/a2 > 250. It fol- 

lows from (23) that xi > 30. By Lemma 8, we now have Idl> 2.5 - 107. Hence 
Id I/a2 > 800 and so by (21), x1 > 34. Therefore IdI> 108 and so Id I/a2 > 4000. 
Thus by Lemma 1 1, Id I > 102000 and this completes the proof. 

We have now come to the point that we must make use of the numerical values 
of B2(a) with prime a, 2 < a ' 47. 

LEMMA 13. If a < 53 and either Idl > 600000 or Id I/a2 > 800, then Idl > 
102000. 

Proof: We recall that a is a prime. For Idl > 600000 and a ' 23, we have 
Id I/a2 > 800 already. For Idl > 600000 and 29 S(a ' 47, we have xi > 21 by 
Lemma 8 and IdI/a2 > 250. By (22), together with the fact that IB2(a)I < .107 for 
29 < a < 47 (see Table 3), we get xi > 28 in this case which by Lemma 8 leads to 
Idl> 800 - 472 and so we have IdI/a2 > 800 in all cases. Now by (20), 
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TABLE 3 

a B2(a) + 107 0 3729B2(a) + 103 0 

2 -.541421469 -2018.961 

3 .304504877 1135.499 

5 -.355642421 -1251.611 

7 .176779814 659.212 

11 .102601911 382.603 

13 -.066432969 -247.729 

17 .084063829 31 3.474 

19 -.038819482 -144.758 

23 .022308245 83.1 87 

29 -.106959524 -398.852 

31 -.090143184 -336.144 

37 .026169905 97.588 

41 .038194456 142.427 

43 .048526374 180.955 

47 -.034830231 -129.882 

j(x2 4) 3729 (xl - 3) - B2(a) 

2 
53729,) (x -3) + .340 10-6 < 2.1 10-9 

or, 

3729(x2 - 4) - 5546(x, - 3) - 3729B2(a) 
(29) 

- 3729 ( 2 -5546) (xl - 3) - .0012681 < 10-5. 
'Y1 3729/' 1 

If xi < 10400, then we see from (29) and (26) that 

(30) 13729(x2 - 4) - 5546(xl - 3) - 3729B2(a)l < .16. 

From Table 3, we see that this is possible only for a = 2, 29, 31, 43 and 47. Fur- 
ther (29) and (26) eliminate a = 2, 29 and 47 (basically because the right-hand 
side of (26) is positive). This leaves a = 31 and 43; in these cases (30) slows that 
we must have 

{-336(mod 3729) if a= 31, 
-5546(x1 -3) 

181(mod3729) if a = 43. 
This gives 
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xi = 1095, 4628, 8553 if a = 31, 

xi = 2833, 6562, 10291 if a = 43. 

When we put these values of xl in (29) and use (26), we see that (29) is not satis- 
fied and so xl > 10400. Therefore Id >102000. 

In the case of a = 43 and xi = 2833, we have 

3729 (4 * 10-9)(x1 - 3) = .0422 + 10-40, 

3729 B2(a) = 180.955 + .0010, 

and so the error term in (26) is essentially the maximum permissible. As a check, we 
could also try the above six values of xi in (12) of Lemma 7 with n = 3; calcula- 
tion reveals that the right-hand side of (12) is nowhere near an integer. 

LEMMA 14. If a > 13, then Id l > 600000. 
Proof By Lemma 4, 

(31) (dIp) = -1 for p = 2, 3, 5, 7, 11. 

There are precisely 30 possible values of d (mod9240) satisfying these conditions. 

For each of these thirty values, we then check the 64 or 65 values of d between 0 

and -600000 that are congruent to it (mod9240) and find that, besides d = -67, 

d = -163 (both class-number one) that every such d is either divisible by two primes 
less than (Idl/4)/2 or there is a prime p < (Id 1/4)/2 with (dip) = 1. Thus by Lem- 

ma 4, if a > 13 then Id I > 600000. 
The search just described was easy on the desk calculator although it would have 

been a chore by hand. The search revealed that there are exactly two discriminants d 

between 0 and -600000 satisfying (31) such that d is divisible by at most one 

prime <47 and is a nonresidue of all other primes <47. These numbers are -85507 
and -207883. They do not contradict the value of M.3 in Lemma 5 since 37 di- 

vides the former and 13 divides the latter. Although their class-numbers are un- 

doubtedly small for their size, they do not have class-number 2 since 

85 07 ( -207883 1. 

LEMMA 15. If a = 2, 3, 5, 7, 1 1 then either d is one of the eighteen discrimi- 
nants in Theorem 1 or Id] > 800a2. 

Proof. It is easily checked that if Id I < 484, then d is one of the eighteen num- 

bers listed in Theorem 1 and so we assume that Id I > 484 and so (Id 1/4)`2 > 11. 

Therefore by Lemma 4, a Id and d is a nonresidue of the other four primes 1 11. 

This gives us 30 possible values of d (mod 4620) when a = 2 and 30, 15, 10, 6 

possible values of d (mod9240) when a = 3, S, 7, 11 respectively. We now tabu- 
late every value of d between -484 and -800 a2 satisfying these congruence condi- 
tions and such that if p is a prime, p # a, p < (Id 1/4)1/2 then (dip) = -1. The list 
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contains only nonfundamental discriminants (for example -163 a2 for a = 2, 3, 5). 
The lemma follows from Lemma 4. 

Theorem 2 follows from Lemmas 10, 12, 13, 14 and 15. 
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